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Aerodynamic coefficients and longitudinal stability 
of sail aerofoils 

By A. D. SNEYD 
University of Waikato, Private Bag, Hamilton, New Zealand 

This paper extends previous theoretical work on inextensible sails in two ways. First, 
the asymptotic expansion of sail camber in terms of the small angle of attack a is 
continued to include terms of order a3, because only a t  this order can one obtain 
information about the longitudinal static stability of a sail aerofoil. Secondly, to 
describe aerofoils such as those found in pterodactyl or bat wings, we also consider 
pretensioned membranes which acquire camber by stretching the surface material, 
or bending the supporting structure. Approximate formulae are derived for the 
aerodynamic coefficients in the limits of large and small tension, and the effect of sail 
and structural flexibility on these coefficients is discussed. 

1. Introduction 
Several authors have studied two-dimensional irrotational inviscid flow over sails 

which are fixed at the leading and trailing edges. Thwaites (1961) and Nielsen (1963) 
solved this problem numerically, assuming that the angle of attack a were small, and 
using thin-aerofoil theory to obtain the first-order term in an asymptotic expansion. 
For finite 01, Vanden-Broeck & Keller (1981) obtained approximate analytic solutions 
assuming high sail tension, while Bundock (1980) and Vanden-Broeck (1982) 
developed exact numerical methods. Except for Bundock, these authors have been 
concerned with inextensible sails, which can billow because they are slack, as is the 
case with yacht sails or hang-glider wings. In  this paper we also consider aerofoil 
sections like those found in pterodactyl or bat wings, which consist of a stretched 
membrane and behave essentially like sails, but without slack, camber being 
accommodated by stretch in the membrane or bending of the supporting structure. 
Bundock (1980) studied a model sail which had constant tension, independent of its 
camber or the airflow. This represents the opposite extreme from the inextensible 
sail - the perfectly extensible sail. Stretched membrane aerofoils lie between these 
two extremes, and tension increases as the airflow stretches the material. Previous 
authors have usually given results for only the sail profile and lift coefficient, but this 
paper is particularly concerned with sail aerofoils in flight, so the moment coefficient 
and centre of pressure are equally important.. 

One difficulty with considering inextensible sails is that only in two-dimensional 
geometry - the sail of infinite span attached to fixed parallel leading and trailing 
edges - can changes in surface shape occur. In  practice yacht sails are cut to assume 
a predetermined cambered shape and, if the sailcloth were inextensible, the first 
fundamental surface form (or metric tensor) would be fixed at manufacture. It is 
shown in Appendix A that, if the'first fundamental form of a surface is given, and 
if two intersecting curves on the surface are also specified, then a t  least some part 
of the surface is uniquely determined. For example, the shape of an inextensible yacht 
sail would be completely determined by its cut, and by the shape of mast and boom 
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to which it were rigidly attached. Thus the camber of a two-dimensional sail can 
respond to aerodynamic forces in a way that is impossible for any finite inextensible 
sail, and a rigid surface might be a better model for three-dimensional problems. Real 
sailcloth is not quite inextensible (though this is considered a desirable ideal) and a 
realistic problem would involve the shape, airflow and tension distribution all as 
interrelated variables. 

Section 2 of this paper describes the mathematical technique used to analyse the 
flow over a sail of given tension. The methods are similar to those of Nielsen 
(1963) - thin-aerofoil theory is used, but the small-a expansion is continued to include 
terms of order a3. This is necessary because the O(a) expansion predicts the position 
of the centre of pressure of a sail without slack to be independent of a, which 
represents neutral longitudinal static stability. To obtain information about the 
movement of the centre of pressure with a, higher-order terms must therefore be 
included. The asymptotic expansion method is used in preference to the exact 
methods of Bundock (1980) or Vanden-Broeck (1982), because the O(a3) terms show 
explicitly the form of the inaccuracy involved in linear theory. Also, if the expansion 
is truncated at  O(a3) one can describe static stability in terms of analytic formulae, 
such as (4.6), whereas the corresponding exact relation would have to be presented 
in graphic or tabular form. 

It should be emphasized that these calculations in no way depend upon the sail 
material (so long as it is non-porous). The tension-elongation law for the material 
serves to determine the value of the tension in any particular application. 

Section 3 discusses the results of the calculations and derives approximate formulae 
for the sail profile and aerodynamic coefficients in the limit as sail tension tends to 
its minimum possible value. The methods of Vanden-Broeck & Keller (1981) can be 
used to find similar approximations in the opposite limit of large tension, and 
comparison with exact results shows that one or other of the approximate formulae 
will always be reasonably accurate. 

Section 4 applies the results of $3 to stretched-membrane sails whose tension varies 
linearly with sail extension. Since changes in sail length are of order the camber 
squared, the tension varies only slightly from its static value, and only the higher-order 
terms in the various aerodynamic coefficients are affected. Perfectly extensible (or 
constant-tension) sails are always statically stable, but this stability is lost for sails 
less easily stretched. All movements of the centre of pressure are O(a2) ,  whereas for 
rigid aerofoils they are O(a) ,  and usually towards the leading edge as a increases, 
giving static instability. This is why rigid-winged aircraft need a secondary wing or 
tailplane to achieve static stability, whereas pterodactyls and bats may,not. 

Structural flexibility is most important at the trailing edge. For example, the 
leading edge of a hang-glider wing is usually a tubular aluminium spar, whereas the 
trailing edge consists of a tensioned wire, and it seems generally true for sail or 
membrane wings that the leading edge is more rigidly built. Section 4 therefore 
considers trailing-edge movement only, the main effect of which is to counteract any 
increase in a. 

Sails with slack are considered in $5.  These behave more like rigid aerofoils in that 
they retain finite camber as a+O, and are statically unstable. 
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I 
FIGURE 1. Diagram of sail. 

2. Mathematical methods for a constant-tension sail 
AirJlow calculation for a given camber y(x) 

The aerofoil to be analysed consists of an infinitely long strip of sail stretched at 
constant tension T (independent of length) between the leading edge x = 0 and 
trailing edge x = c,  as shown in figure 1 .  The idea of a constant-tension or perfectly 
extensible sail is unphysical, but i t  is convenient to derive basic results for this simple 
situation, which can then be applied to more realistic sails. The airflow is assumed 
irrotational and incompressible, so that 

I( = U(cos a + u ) f +  U(sin cz+w)y, 

where the perturbation flow (u, w) is due to the presence of a vortex sheet on the sail 
surface, of strength o(x) per unit length along the x-axis. The Kutta trailing-edge 
condition implies that 

w(c) = 0. (2.1) 

The analytic function u-iv of z = x+iy is given by 

so one can apply the Plemelj formulae to find the mean perturbation components 

4 r e  

1 r e  

where the subscripts s+ , s- denote values of the variable on the upper and lower 
sail surfaces, and r is defined in figure 1. The Cauchy principal value of the singular 
integrals in (2.2) and (2.3) is to  be understood, here and in the equations following. 

The flow must be tangential to the sail surface, so 

sina+Vs = y’(x) (U,+cosa). (2.4) 
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The angle of attack a will be assumed small (as it must be in practice to avoid 
separation) and clearly y ( x )  and w ( x )  are odd functions of a, so one can write 

(2.5) 
Substitution of (2.2) and (2.3) into (2.4) and equating terms of order a and order a3 
gives the following two integral equations for wl(x) and w3(x)  : 

y = a y ,  + a3y3 + . . . , w = awl + a3w3 + . . . . 

where g(z) depends on yl(z) and wl(x) and is given explicitly by (2.16). 

Sail equilibrium equations 
The pressure difference across the sail is balanced by tension, so using Bernoulli’s 
theorem one obtains 

where p is air density, K is the sail curvature and q+, q- the flow speeds on the upper 
and lower surfaces. Equation (2.8) can be written: 

- p V w ,  = KT, 

where Uw, = q- - q+ is the vortex sheet strength per unit length along the sail, and 
Uq = t (q++q-)  is the average surface flow speed. Now w1 = (dx/dl)w ( I  = arc-length 
along the sail surface) and q = (cosa+Us) dlldx, so 

‘i - q?) = KT, (2.8) 

where 

2w(cos a + U,) = cky”( 1 + y’”-$, 

k = T/(+pU%) 

is a dimensionless sail-tension coefficient. The O(a)  and O(a3) terms of (2.9) now give 

w1 = icky:, o3 = $ k y i + h ( x ) ,  (2.10), (2.11) 

where h(x) includes nonlinear interactions of y 1  and w1 and the curvature correction, 
and is given explicitly by (2.17). Equations (2.6) and (2.10) can be solved to determine 
y l ( z )  and w,(x); then h(x)  and g(x) are calculated and finally (2.7) and (2.11) solved 
to determine y 3 ( z )  and w3(x) .  

Numerical methods 

The numerical method used is essentially that of Nielsen (1963). Under the 
substitutions 

z = w + c o s e ) ,  c = +cos$), y ; ~  =.w), y ; ~  =.m, 
(2.6), (2.10), (2.7) and (2.11) become respectively 

dfi sin 0 q ( 0 )  = - k -  , 
d6 

(2.12) 

(2.13) 

(2.14) 

(2.15) df3 sin 0 w3(8 )  = - k-+ h ( e ) ,  
dB 
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where 

g(e) = -+-I 1 1 wl($) tan2 x1 sin $ d$ --yl(6) - f 1 J' O1($) tanX1 sin $ d$, 
6 27c C O S ~ - C O S $  2% cose -cos~  

(2.16) 

The angle x is shown in figure 1 and 

The sail slope fl(e) is approximated by a cosine series, 
N 

n-o 
fl(e) = Z P n  Cosne, 

and, since y = 0 at both leading and trailing edges, 

Jocyi(z) dx = $ f' f1(@ sin 0 de = 0, 
0 

which gives 
[tNl p2, 

Po= E -. 
n=l 4n2 - 1 

(2.18) 

(2.19) 

The usual methods of thin-aerofoil theory give the solution of (2.1) and (2.12) as 

i-cose N 
+ 2  Z Pn sinno. 

sine n-l 
= W o - 1 )  (2.20) 

Expressions (2.18) and (2.20) are then substituted into (2.13) and the cosine functions 
on the left-hand side are expanded as sine series, using the formula 

03 

cosnO= Z anpsinp6 ( O G e G n ) ,  

where anp = 4p/n(p2-n2) if n + p  is odd, and zero otherwise. Then equating the 
coefficients of sin no, n = 1,2,  . . . , N ,  on each side, and applying (2.19) gives a system 
of N +  1 linear equations for Po, . . . , P N .  After some rather lengthy algebra, g ( e )  can 
be determined in the form of a cosine series in 0, and h(8) in the form of a sine series; 
then (2.14) and (2.15) are solved for f3(e) and w,(@) as before. 

P-1 

The equations for the can be written 
N 

j-0 
Z A,  P j  = ci, (2.21) 

where Aij = ik62j+aj+ , , i -aI - l , i  (i,j > 0);  

8i/a(i2- 1 )  (i > 0 and even), 

8/ni (i odd); 
At0 = { 
A00 = 1,  

- l/(j2- 1)  (j even), 

= { O  ( j  odd); 
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N 10 16 20 

Yl(O.4) 0.4292 0.4292 0.4291 
YdO.4) 0.8153 0.8137 0.8134 
CL1 11.03 11.03 11.03 
CL, 3.744 3.712 3.714 
CAI, 3.865 3.865 3.865 
C M ,  2.001 1.983 1.984 

TABLE 1. Convergence as N - t  cc (k = 3) 

The vectors gi, hi consist of the coefficients in the Fourier expansions of the forcing 
terms in (2.12)-(2.15). When solving for yl, go = - 1.0 and the rest of the coefficients 
are zero; for y3 the coefficients are found from (2.16) and (2.17). 

Program checking 

The computer program was written in Fortran 77 and the calculations performed on 
the University of Waikato Vax 11/780 computer. The aerodynamic section of the 
program was checked by comparison with the analytic solution for an aerofoil in the 
shape of a circular arc. The results for yl(z) and q ( x )  were checked against Nielsen’s 
(1963) results, and all results were checked for convergence as k+ GO to the analytic 
solution of Vanden-Broeck & Keller (1981). Finally convergence as N - t  co was 
checked by a comparison of results for various values of N ,  as shown in table 1 .  

3. Numerical results and asymptotic expansions 
One important prediction of linear theory is that a minimum value of the sail-tension 

coefficient k, say k,, is necessary to give a purely convex sail shape. As k+k, from 
above, the camber function yl(x) + 00, tension being insufficient to withstand the 
aerodynamic forces. The best estimate of k, has been given by Chalmers (1966) : 

k, = 1.7272. 

The exact calculations of Bundock (1980) confirmed this singular behaviour at a 
certain k-value, k,(a), which increased with a. In  the limit a+O, of course k , (a )+k , .  
Thwaites (1961) reported solutions of the sail equations for k < k, in which y(x) is 
negative (‘reverse-camber ’ solutions) or changes sign, and Haselgrove & Tuck (1976) 
analysed the profile stability of all solutions for inextensible sails. Except under 
certain carefully controlled conditions, profiles with k < k, are unstable, so the 
present calculations are generally restricted to k > k,. 

As k+k, the lowest eigenvalue of the matrix A in (2.21) tends to zero, and it is 
shown in Appendix B that we can write 

yl(z) = (k  - kc)-’ F ( z )  + G(z) + O ( k -  k c ) ,  (3.1) 

where the functions F ,  G, shown in figure 2, are independent of k. The function F(x) 
corresponds to the zero eigenvector of A when k = k, and is symmetric. As k increases 
and contributions from G become more significant, the point of maximum camber 
moves towards the leading edge and the sail assumes its characteristic asymmetric 
shape. As k-t  00 the point of maximum camber-tx = 0 .403~ .  The higher-order 
camber functions y3(x), y5(x) etc. will have progressively stronger singularities as 
k-tk,. Equations (2.16) and (2.17) show that, for the purposes of calculating y3, the 
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FIGURE 2. Graphs of F(z )  and G(z). 

vector ci on the right-hand side of (2.21) will be of order ( k - k , ) - 3  as k+k , .  The 
singularity in A will provide a further factor of ( k -  k , ) - l ,  so that altogether 

y3 = O ( k -  k,)-4 as k +  k,. 

I n  general one would expect 

so the condition for the convergence of (2.5) would be: 

k - k,  > constant x ai, 

or equivalently k,(a) = k ,  + constant x cd. 

This formula agrees with the results of Bundock (1980) in that  k,  is an increasing 
function of a,  but the above power law is inconsistent with his numerically calculated 
graph of k,(a)  against a. 

Sail projles 
Graphs of y l ( x )  have been given by a number of authors, and are not repeated here, 
but figure 3 shows graphs of y3(x)  for various values of k .  The O ( a )  equations of 
thin-aerofoil theory tend to  (i) overestimate the restoring force due to  tension, and 
(ii) overestimate the aerodynamic forces (a  instead of sina).  For small k and highly 
cambered sails effect (i) is predominant and the sail camber is underestimated, so that 
y3(x)  is everywhere positive. Conversely for large k when the sail camber is small, it  
is overestimated and y3(x)  is everywhere negative. For moderate values of k ,  y3(x)  
changes sign. 

Lift and moment coeficients 
Lift and moment coefficients C,, C, are defined by setting 

where L is the lift and M the moment of the aerodynamic forces about the leading 
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FIGURE 4. Graphs of C,, and C,, against k .  The dashed lines 
represent the relevant approximation. 

edge. These coefficients, like y(x), are odd functions of01 and can be expanded in the 
form 

C, = aC,, + 01%'~~ + . . . (3.2) 

C,  = aCM,+a3C,,+ .... (3.3) 

Figures 4 and 5 show graphs of CL1, CL3, C,, and C,, against k. The coefficients CL1 
and C,, increase with decreasing k because, as sail tension decreases, camber 
can increase more rapidly with 01. Looking at (3.1) one can see that C,, must 
have an asymptotic form 

C,, = ( k - k c ) - l C L l l + C L I O + O ( k - k C )  as k+k,, 
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t 

k-k, 

3 t  I 'li 1 

FIGURE 5. Graphs of C,, and C,, against k. The dashed lines represent the relevant 
approximation. Note that in (a )  the coefficient scale is logarithmic. 

and C,, similarly. These expansions are summarized in table 2 and, for comparison, 
they are also graphed in figure 4. Similarly we expect CL3 to have an asymptotic form 

and also CM3.  Only the leading coefficient has been calculated, and the corresponding 
asymptotic formula is graphed in figure 5 (a) .  A comparison for k- k, < 0.9 was not 
possible because of convergence difficulties with the computer program. Figure 5 ( b )  
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k+co  k-k, = t + O  

2[0 --in -sin 01 
2~ + k-'( 16 - K') 

+ (1/12k) (64 - 3n2) 

4+2/(3nk) 
- fn  - (1/6k) ( 1  12 - 77~') 

-4. - (1/18k) (256 - 2 1 ~ ' )  

(1 /24~k)  (9n2-80) 

n/2k 
(1 /24k2) (9nz - 64) 

F ( z )  t - ' + G ( s )  

5.96911-1 +5.1831 

2.98451-1 +0.8639 

i-0.2894t 
11 .2532t-4 

5.6266t-* 
- 

1.72831-1 -0.5052 

0.6718tP -0.0859t-' 

TABLE 2. Asymptotic forms of aerodynamic coefficients etc. 

shows graphs of CL3 and CM3 for larger values of k ,  and the behaviour as k increases 
reflects that  of y3. 

Vanden-Broeck & Keller (1981) give the following approximation to the lift 
coefficient in the limit k +  co : 

C, = 2n: ~incr.++k-~(16-n:~) cosa ~ i n 2 a + O ( k - ~ ) ,  (3.4) 

and an extension of their methods gives 

C, = an: s i n 2 a + E 1  sin% [ c o ~ ~ a ( ! j - Q n : ~ ) + s i n ~ a ( ~ n : ~ - ~ ) ] + O ( k - ~ ) .  (3.5) 

From (3.4) and (3.5) one can derive large-k approximations for CL1, C M l ,  CL3, C,,, 
which are summarized in table 2. For comparison, graphs of these approximations 
are also shown in figures 4 and 5(b).  

Longitudinal static stability 
The line of action of the resultant of the aerodynamic forces acting on the aerofoil 
intersects the x-axis at the point cxp, where 

C M  x =  
p c, cosa'  

It follows from (3.2) and (3.3) that  xp can be expanded in the form: 

xp = xpo + a2xp2 + . . . , (3.7) 

so that, to  leading order, xp is independent of a. 
The sign of dx,lda determines the longitudinal static stability of the aerofoil. If 

this is positive, then any increase in a (say due to an  upward gust) moves xp towards 
the trailing edge and provides a moment tending t o  rotate the aerofoil leading edge 
downwards, and to restore the original value of a. This situation represents static 
stability, and conversely, if the sign is negative, we have instability. Equation (3.7) 
shows that to  leading order, sail aerofoils have neutraE static stability (Sneyd, 
Bundock & Reid 1982), in marked contrast with rigid aerofoils, which are generally 
unstable, the reason being as follows. 

A rigid aerofoil has an  aerodynamic centre - a point about which the pitching 
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FIQURE 6. Graphs of xpo and xp2 against k. The dashed lines 
represent the relevant approximation. 

moment is independent of a-which for a thin aerofoil is approximately a t  the 
quarter-chord position, x = %, y = 0. Thus 

where CM, the moment coefficient about the quarter-chord position, is constant. For 
aerofoils with positive camber everywhere, CM is positive, and since C, increases with 
01, dx,/da is negative. A constant-tension sail, on the other hand, does not have a 
fixed shape, its camber being approximately proportional to a. This means that there 
is no aerodynamic centre, and indeed cM, like the camber, is approximately 
proportional to  01. 

To determine the static stability of a sail aerofoil one must therefore examine the 
sign of xpz, which is graphed in figure 6, along with the large-k asymptotic form. (The 
leading coefficient in the asymptotic form as k+lc, appears to  be zero, so a more 
detailed analysis would be necessary to provide a formula.) It can be seen that xp2 
is always positive (and the aerofoil always stable), but that  xp2 decreases with 
increasing k. 

4. Elastic sails and flexible structure (no slack) 
Rigid structure 

For a sail of no slack, attached to a rigid structure - i.e. to fixed leading and trailing 
edges - camber can be accommodated only by stretching the fabric. Let T be the sail 
tension with no airflow and T the tension of the cambered sail. We assume a linear 
relation between T’ and sail length: 

Z - c  = h,(T’-T), (4.1) 

where 
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is the sail length, and A, a constant coefficient of sail extensibility. From (4.1) and 
(4.2) we find 

where k' and k are the tension coefficients in the sail, with and without airflow, 

k' -k  = a2Al /As ,  (4.3) 

is the a2 coefficient of relative sail extension, and A ,  = i p V A ,  is a dimensionless 
coefficient of sail extensibility. Equation (3.2) now becomes 

c, = aC,,(k') + C53CL3(k') + . . . . 
The coefficient C,, can be expanded as a Taylor series about k to give 

(4.4) 
C, = aCL,(k)+a3[CL3(k)+A;'Al dCL1 - ]+O(a5) ,  

dk 

and it follows similarly that 

and 

To leading order, the aerodynamic coefficients are independent of the sail elasticity, 
but increasing tension has the effect of somewhat reducing the terms of O(a3) ,  since 
the derivatives of the leading coefficients are all negative. If A,  is very small (and 
the sail almost inextensible) then these third-order corrections become important. 
Equation (4.6) shows that xp2 increases with A,, and that there is a miminum value 

necessary to give stability. 

Flexible structure 
To model the structural flexibility of the trailing edge we suppose that its displacement 
R from the initial position (c, 0) is a linear function off, the difference between the 
force exerted by the sail on the trailing edge and the initial force - TJ.  Thus we can 
write 

Ri = A ,  f,, (4.7) 

where A ,  is a constant 2 x 2  second-order tensor. We suppose f is conservative 
which implies Aij is symmetric, and also that a force in the x-direction produces 
no y-displacement, so that the off-diagonal elements of Aij must be zero. Then, 
referring to figure 7, one sees that (4.7) can be written in the form 

C' COSP-C = A,[T-T' cos (?'-/?)I, 
c' sinp = A, T sin (?'-/I), 

(4.8) 

(4.9) 

where A,, A, are elastic constants. 

been rotated through an angle p by the trailing-edge displacement, is given by 
The effective angle of incidence a' of the airflow to the aerofoil, whose chord has 

a' = a-p. (4.10) 
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FIQURE 7. Diagram for analysing trailing-edge displacement. 

The odd functions a’, P and y of a can be expanded as power series like (2.5), and 
the even functions c‘, k‘ in the form: 

C’ = c(1 + a 2 c , + . . . ) ,  k‘ = k ( l + a 2 k 2 +  ...). 

Equating terms of order a in (4.9) and (4.10) gives 

Pl = q / ( Y l ~ ; - - P A  a; = 1 -PI, 
where A ,  = +pU2A, is a dimensionless trailing-edge flexibility coefficient. It follows 
that 

I 1 + k A ,  (4.11), (4.12) 
1 + kA,+ y1 kA, ‘ 3 a, = 

Y l k A  
P1 = l + k A , + ; l k A ,  

The coefficient a; might be called the ‘washout factor’ - it gives the effective 
reduction in angle of attack due to the upward movement of the trailing edge. To 
within order a, the lift and moment coefficients will be reduced by multiplication by 
this same factor, which has a maximum value of 1 when A ,  = 0 and decreases to a 
minimumof l / ( l + y l )  asA,+co. 

Static stability 
Simple trigonometry applied to figure 7 gives 

cxp = c’xp(k’) (cosp+sinP tana) ,  (4.13) 

since xb = xp(k’ ) .  When equating O(a2) terms in this equation, i t  is necessary to 
expand xp(k’ )  as a Taylor series in k‘ - k to obtain 

(4.14) 
dx 

xp2 = Xpo(k) (c, +P1 -m + a?xp,(k) + kk, -$. 

Equating O(a2) terms in (4.3) and (4.8) yields 

k,  = (kA,)-l  ( c , + c L ~ ~ A Z ) ,  (4.15) 

c2-% = ~A,[wlal-Pl)2-k21. (4.16) 

The variables k,, c ,  can be found from (4.15) and (4.16) and substituted into (4.14) 
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FIGURE 8. Effect of trailing-edge flexibility on longitudinal static stability. 

to give a rather complicated formula for xp2. To simplify matters we consider only 
the case of an inextensible sail ( A ,  = 0) and an isotropic trailing-edge structure so 
that A ,  = Ay = A say. Then we find 

(4.17) 

Graphs ofxp2 against A for various values of k are shown in figure 8. It appears that  
the stability increases with A ,  the main reason being that the effective decrease 
in u rotates the sail chord until it is more nearly perpendicular to the lift force, so 
increasing the moment about the leading edge. 

5. Sails with slack 
Section 4 dealt with sails that  remained taut in still air, so that the camber tended 

to zero with u. Now consider a sail whose length under zero tension is e( 1 + s), where 
s is a dimensionless slackness coefficient. We suppose that the sail is elastic with a 
coefficient of extensibility A,  (as defined in $4) and that the leading and trailing edges 
are fixed. When the sail is stretched under a tension corresponding to  the smallest 
possible value k, of k, its length will be c( 1 +s)  + e l l ,  k,, so we define s’, the effective 

s‘=s+A,k,.  slack, by setting 

The theory in this section applies to any sail for which s’ > 0. Thus a sail which is 
taut in still air, but under tension corresponding to k = k,, say < k, will be considered 
as slack with s‘ = As(kc-ko). Throughout this section we consider only the leading 
terms in the camber function and aerodynamic coefficients. 

Coeficients when u Q s’: 

The sail camber uyl must be of order s’?, so, if u Q s‘i, y1 is large and t = k- k, must 
be small. The linear relation between sail tension and length gives 

I 
kA, = --(l+s) = ~ c ~ A 1 - s .  (5.1) c 
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Substituting the small-t expansion of A1 from table 2 into (5.1) yields 

t = +a:p-$2(b+aA,/s’), (5.2) 

where a = 0.6718, b = 0.0859 and the parameter p is as defined by Thwaites (1961): 

p = a/$+. 

The existence of multiple solutions for k,  corresponding to a small-enough fixed value 
of /3, was noted by Thwaites (1961) (see his figure 6),  and (5.2) in fact gives the two 
largest possible solutions, one > k, and the other < k,. Haselgrove & Tuck (1976) 
showed that when A ,  = 0 both of these solutions represent sails with profile stability, 
whereas all the other smaller solutions correspond to instability. The positive solution 
of (5.2) giving k > k, is the ‘normal’ one with the sail billowing to  the lee, while the 
negative solution giving k < k, corresponds to a sail with ‘reverse camber’ - i.e. 
billowing to windward (but nonetheless having profile stability). 

The lift coefficient can be estimated using (5.2) and the asymptotic form for CL1 
given in table 2:  

C, x 7.28s’?+a(5.56+ 2.98/1,/s’). (5.3) 

C, z +3.12s’4+a(0.95+ 1.49AS/s’), (5.4) 

xp x 0.5- (+0.28a/s’i). (5.5) 

Similar formulae can be derived for C, and xp: 

Inextensible sails: a + si 
Consider now an inextensible sail with a 9 si. Since the camber uyl must be of order 
si, y1 must be small, and k large. Substituting the large-k asymptotic expansion for 
AZ into (5.1) gives 

24s i ;=l@T41. 
(Since now /3 9 1 there is only one solution.) The corresponding approximations to 
the aerodynamic coefficients are 

(5.7) 

The first term in (5.3) is identical with equation (30) of Nielsen (1963) for the lift 
coefficient when a = 0. When the sail is elastic its camber increases more rapidly with 
a, which accounts for the presence of the term proportional to A,. It is interesting 
to  compare (5.3) and (5.6) with equation (72) of Thwaites (1961): 

C, = 6.36d+ 2na, (5.9) 

where 2nu is the lift coefficient for a flat plate, and the coefficient 6.36 was chosen 
to fit, as closely as possible, a range of calculated values of C,. Figure 9 compares the 
accuracy ofthe three formulae (for an inextensible sail). While (5.3) and (5.6) are more 
accurate than (5.9) in the appropriate a-limit, (5.9) is reasonably accurate over the 
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FIGURE 9. Comparison of errors involved in various approximations 
to  C,, for an inextensible sail, s = 0.01. 

entire range of values of a. The different coefficients of a in (5.3) and (5.6) reflect 
different modes of camber variation in the two limits. As a+O and k+k, the point 
of maximum camber approaches the midchord, since the sail profile is more and more 
dominated by F(z ) .  The symmetric profile is a more efficient lift generator, so the 
decrease in C ,  as a+O is reduced. When a % s:, k is large and the sail profile almost 
constant, so the coefficient of a is just the flat-plate contribution, 2 ~ .  Equations (5.5) 
and (5.8) both show that sail aerofoils with slack are statically unstable, which is to 
be expected since they behave like rigid aerofoils, retaining finite camber as a+O. 

Flexible st ructure 

Now suppose the trailing-edge displacement from its initial position (c ,  0) is given - -  
by (4.8)and (4.9). When a 6 st ( 5 2 )  can be substituted into the asymptoticform 
for y1 as k+k, (table 2), and one finds 

y’ z yla’ x 1.81s’i. 

To leading order, (4.9) gives 

/3 = kcAy(1.81d~-,8) ,  

1.81s’&, A 
so that ~ . (01 4 84). (5.10) 

Thus if 
1.81s’~k,Ay 

1 +k, A ,  
a <  

the effective angle of attack will become negative, the sail camber will reverse and 
the trailing edge move down again. Since no steady state can be achieved, the 
trailing edge will flap up and down. 

The formula corresponding to (5.10) when a 9 si is 

1 -  A _ _  
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6.  Discussion 
The basic results of this paper are those described in $3  for a sail of constant tension 

coefficient k. These can be used to deduce the properties of elastic sails with or without 
slack, whose tension is initially unknown but can be determined from various forms 
of Hooke’s law. The approximate analytic forms for the aerodynamic coefficients, 
summarized in table 2, are reasonably accurate over most ranges of k. In practice 
they would probably introduce less error than the assumption of laminar irrotational 
attached flow. 

Sails without slack have the important property of neutral static stability (to 
leading order in a )  and indeed, if they are sufficiently stretchable, they may have slight 
degree of positive stability. This property must be important in understanding the 
flight dynamics of bats and pterodactyls, whose wing consists of a tensioned elastic 
membrane without slack. Solid aerofoils (used by insects or birds) which acquire 
camber by bending under the influence of aerodynamic forces would have similar 
stability properties. Such an aerofoil with reverse camber in still air should be 
statically stable. 

We have also seen that structural flexibility can have an important effect on the 
aerofoil characteristics. Sneyd et al. (1982) have analysed a model Pteranodon wing 
in which there is a spanwise variation in trailing-edge flexibility. This leads to a 
spanwise variation in the effective angle of attack - or an effective wing twist - which 
can give static stability. Another effect of a non-rigid trailing edge is to cause slack 
sails to flap at  low angles of attack. This effect could be the cause of the dangerous 
fluttering nosedive which sometimes occurs in hang-glider flight. 

An interesting feature of inextensible slack sails is the existence of two solutions 
when p = a/si 4 1 ,  namely 

y ( x )  z & 1.22s:F(x) +a[G(x) +0.064F(x)]. (6.1) 

Haselgrove & Tuck (1976) showed that both of these solutions have profile stability, 
but argue that the sail will be unstable in this regime because it ‘does not know’ which 
of the two possible shapes to adopt. This is probably true in turbulent conditions, 
when large disturbances to the airflow could buffet the sail from one equilibrium to 
the other. In  carefully controlled conditions the particular equilibrium adopted will 
depend on the way in which equilibrium is approached. For example if an initially 
positive angle of attack a is gradually reduced, the sail profile will follow (6.1) with 
the positive sign, and the corresponding tension will be given by (5.2) as 

k = k, + a;@ 
to leading order in a. The sail profile and tension will continue to follow these 
formulae, even as a becomes negative, and the sail passes into ‘reverse-camber’ mode 
with k < k,. Eventually if a is decreased until p < 0.99 the ‘reverse-camber’ solution 
no longer exists (see Thwaites 1961, figure 6), and the sail would flap across and billow 
to the lee in the normal way. 

Strictly speaking, the work of Haselgrove & Tuck (1976) applies only to inextensible 
sails, and the profile-stability picture might be different if sail material or structural 
elasticity were taken into account. 
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Appendix A 
Consider an inextensible surface S passing through two intersecting curves C,, C,. 

A coordinate system (u, v) can be constructed by drawing a network of lines over the 
surface, so that the equations of C, and C, are v = 0 and u = 0 respectively. Since 
the surface is inextensible, the length element ds, given by 

ds2 = Edu2+2Fdudv+Gdv2,  

is fixed, so E,  F and G are prescribed functions of u and v over 8. In  particular, the 
surface area of S 

Js (EG - F2)a du dv 

is fixed. 

equation of C ,  is 

Let 
curvature. Then 

and 

If X(u, v) denotes the position vector of the point on S with coordinates (u, v), the 

x = X(U,O). 

and ii denote the unit tangent vector and principal normal to  G,, and K the 

= E-iX, 

The notation used is standard for differential geometry of surfaces (see e.g. Lipschutz 
1969, equation (10.1)). Let s  ̂ be a unit vector lying in the surface and perpendicular 
to i: 

s  ̂ = (FXu-EX,)[E)EG-F21]- i .  (A 2) 

Since the r-coefficients can be expressed in terms of E,  F and G and their derivatives, 
i t  follows that ~ i i - s ^  can be expressed likewise. Then the normal curvature of C,, 

(see Lipschutz 1969, p. 179), where L,  M and N are the coefficients of the second 
fundamental form, can be evaluated along C, ,  so L also is determined along C,.  

A similar argument shows that N is determined along C,, and Gauss's Theorema 
Egregium proves that the Gaussian curvature L N - M 2 ,  depending only on E,  F ,  G 
and their derivatives, is known a t  every point-of S.  The Mainardi-Codazzi equations 
(Lipschutz 1969, equation (10.7)) provide a system of quasilinear partial differential 
equations for L and N .  These equations are hyperbolic, since the lines of curvature 
are their characteristics, so the initial data prescribed on G, and C, will ensure a unique 
solution in some region bounded by the given curves. Thus the coefficients of both 
fundamental forms will be determined on some part So of S, and the fundamental 
theorem of surfaces shows that this information determines So uniquely, apart from 
a translation or rigid-body rotation. 
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Appendix B 

coefficients, can be written in the form 
The system of linear equations (2.21) for determining the array Pi of y’ Fourier 

AO,P, = Po1 (B 1) 

(B 21 A,./?.  23 3 = c i -p0  Aio,  i = 1,2, ..., N ,  

where a repeated suffix implies summation from 1 to N .  If Xi and & are the solutions 
of 

A, Xi = ci, A,  = Aio, (B 3% b)  

it follows that Pi = X,-Po&, (B 4) 

and then Po can be determined by substituting (B 4) into (B 1) to give 

The reduced N x N matrix A,, is real and symmetric, and has real eigenvalues (in 
ascending order) A,, A,, . . ., A, with corresponding real orthogonal unit eigenvectors 
eli, e2<, . .., eNi say. Equations (B 3a) can be solved in terms of the eigenvectors: 

xi = c, epjepilhp 

= c, eli e l i / A 1  +xi 

say. As k -  k, = t say+O, A,+O, so for small t we can write 

xi = xi, t -1 +Xi, + O(t) ,  (B 6) 

where Xi, = c j  e l ,  e l i / A ;  (B 7 )  

Xi, = xi + c j (e i j  eli + eIj eii)/h; - cj eIi eli hr/h;2, (B 8) 

q = q1 t-1 + To + O ( t )  

and 

where A; denotes (dAl/dk),,kc etc. A similar expansion 

(B 9) 

can also be found. When Po is calculated from (B 5), no terms of order t-l will appear 
since both Xi, and &, are proportional to e l i ,  whose even components are all zero, 
so that Ao,el, = 0. 

From (B 4), (B 6 )  and (B 9) i t  can be seen that F(x)  in (3.1) is determined by the 
requirement that F’(x) have Fourier coefficients Xi, -Po The function G(s) is 
similarly determined from Xio-po 5,. 

The array of F‘(s) Fourier coefficients is proportional to eli, so the even coefficients 
are all zero. This means that F ( x )  is symmetric about 8 = in - the midchord of the 
aerofoil . 
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